Accurate Spatial Neighborhood Relationships for Arbitrarily-Shaped Objects Using Hamilton-Jacobi GVD
نویسندگان
چکیده
Many image segmentation approaches rely upon or are enhanced by using spatial relationship information between image regions and their object correspondences. Spatial relationships are usually captured in terms of relative neighborhood graphs such as the Delaunay graph. Neighborhood graphs capture information about which objects are close to each other in the plane or in space but may not capture complete spatial relationships such as containment or holes. Additionally, the typical approach used to compute the Delaunay graph (or its dual, the Voronoi polytopes) is based on using only the point-based (i.e., centroid) representation of each object. This can lead to incorrect spatial neighborhood graphs for sized objects with complex topology, eventually resulting in poor segmentation. This paper proposes a new algorithm for efficiently, and accurately extracting accurate neighborhood graphs in linear time by computing the HamiltonJacobi generalized Voronoi diagram (GVD) using the exact Euclidean-distance transform with Laplacian-of-Gaussian, and morphological operators. The algorithm is validated using synthetic, and real biological imagery of epithelial cells.
منابع مشابه
Accurate Analysis of Dielectric Backed Planar Conducting Layers of Arbitrarily Shaped in a Rectangular Waveguide
The characteristics of dielectric backed planar conducting layers of arbitrarily shaped in a rectangular waveguide are calculated by means of coupled integral equation technique (CIET) which accurately takes higher order mode interactions. Equivalent structures for the accurate analysis whole structure are introduced in which magnetic surface currents are identified as the unknowns at the apert...
متن کاملSolution of Hamilton Jacobi Bellman Equations
We present a new method for the numerical solution of the Hamilton Jacobi Bellman PDE that arises in an infinite time optimal control problem. The method can be of higher order to reduce ”the curse of dimensionality”. It proceeds in two stages. First the HJB PDE is solved in a neighborhod of the origin using the power series method of Al’brecht. From a boundary point of this neighborhood, an ex...
متن کاملExtending the Qualitative Trajectory Calculus Based on the Concept of Accessibility of Moving Objects in the Paths
Qualitative spatial representation and reasoning are among the important capabilities in intelligent geospatial information system development. Although a large contribution to the study of moving objects has been attributed to the quantitative use and analysis of data, such calculations are ineffective when there is little inaccurate data on position and geometry or when explicitly explaining ...
متن کاملAnalysis of Neighborhood Relationships in Biomedical Images
Analysis of Neighborhood Relationships in Biomedical Images Arnab Bhattacharya The ability of biomedical images to capture spatial and temporal relationships not immediately available from other data sources make them vital in understanding the underlying processes of biology. Therefore, it is imperative to investigate and analyze the neighborhood relationships among the different image feature...
متن کاملGalerkin Approximation of the Generalized Hamilton-jacobi Equation
If u is a stabilizing control for a nonlinear system that is aane in the control variable, then the solution to the Generalized Hamilton-Jacobi-Bellman (GHJB) equation associated with u is a Lyapunov function for the system and equals the cost associated with u. If an explicit solution to the GHJB equation can be found then it can be used to construct a feedback control law that improves the pe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007